学術欄

病態生化学教室の歩みと研究

前 薬学部 病態生化学教室 教授 野水 基義 (大学 30 回)

はじめに

病態生化学教室の前身は臨床生化学教室 で、須賀哲弥教授が主宰されておられました。 2004年に病態生化学教室として改名され、著 者が教授として赴任して、20年が経ちました。 この間の病態生化学教室の研究について述べ ていきます。

(1)細胞接着ペプチドの探索研究

基底膜は、表皮下や血管周囲、筋肉細胞や 神経細胞のまわりなどほとんどの組織に存在し ているうすい膜状の細胞外マトリックスで、個 体の発生や分化、組織の修復あるいはがんの 増殖転移に深く関与しています。基底膜の主 要成分であるラミニンは細胞接着をとおして生 物活性の中心的役割を担っていることが知られ ています。ラミニンは、 α 鎖、β鎖、 γ 鎖の3 種類のサブユニットからなる巨大なヘテロ3量 体タンパク質です。著者はラミニンの機能部位 を合成ペプチドを用いて網羅的に解析すること により複雑なラミニンの機能を個々の機能部位 に分けて解明し、さらにそこから得られる様々 な活性配列 (活性ペプチド) を医薬分野に応 用することを目的に研究を行ってきました。筆 者は、合成ペプチドによる網羅的スクリーニ ング法を確立し、図1に示しましたようにラミ ニン-111 $(\alpha 1 \beta 1 \gamma 1)$ のアミノ酸配列を網羅 した673種類のペプチドを合成し、種々の細胞

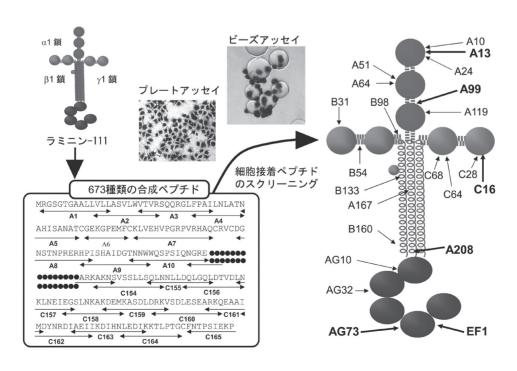


図 1 ラミニン-111 の細胞接着部位の網羅的解析

を用いて細胞接着活性を測定することにより、約 20 種類の活性ペプチドを同定しました (図 1)¹)。 活性ペプチドのなかには細胞の伸展や遊走、 神経突起伸長を促進するもの、またインテグ リンや膜貫通型プロテオグリカンのシンデカ ンなどに特異的に結合するものを見出しまし た。例えば、α1鎖Gドメインの配列である AG73 (RKRLQVQLSIRT) は、シンデカンに 結合し、強い細胞接着活性を示し、細胞の遊 走・浸潤やマトリックスメタロプロテアーゼ (MMP) の放出、ヒト唾液腺由来細胞に作用 して腺様構造を形成、神経細胞に作用して神 経突起伸長を促進させることなど様々な生物 活性を持つことが示されました²⁾。また、同様 に EF1 (DYATLQLQEGRLHFMFDLG) は、

 $\alpha 2B1$ インテグリンと特異的に結合し、細胞接 着と細胞伸展活性を示すことが分かりました2)。

現在までに5種類のα鎖、3種類のβ鎖、 3種類のγ鎖が同定されており、それらの組 み合わせにより19種類のアイソフォームが 知られており、組織特異的・発生段階特異的 に発現しています。そこで全ラミニンアイソ フォームを構成する5種類のα鎖、3種類の β鎖、3種類のγ鎖の活性部位の網羅的解析 を約3.000種類の合成ペプチドを用いて行い、 約100種類の活性ペプチドを同定しました(図 2)3)。表 1 に示した代表的な活性ペプチドの様 に、インテグリン、シンデカン、 α -ジストロ グリカン、CD44を受容体とするものを発見し、 それらの生物学的機能を解明してきました³⁾。

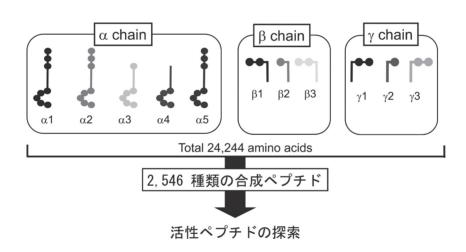


図2 ラミニンアイソフォームのスクリーニング

表 1 主な活性ペプチドの生物活性

ペプチド	アミノ酸配列	受容体	生物活性
A13	RQVFQVAYIIIKA	syndecan/integrin $\beta 1$	血管新生
A99	AGTFALRGDNPQG	integrin $\alpha v \beta 3$	神経突起伸長、がん転移抑制
A208	AASIKVAVSADR	110-kDa protein	神経突起伸長、MMP放出
AG73	RKRLQVQLSIRT	syndecan	細胞分化、神経突起伸長
EF1	DYATLQLQEGRLHFMFDLG	integrin $\alpha 2\beta 1$	細胞伸展
C16	KAFDITYVRLKF	syndecan/integrin $\beta 1$	血管新生、MMP放出
A2G10	SYWYRIEASRTG	integrin $lpha$ 6 eta 1	細胞伸展
A2G78	GLLFYMARINHA	lpha-dystroglycan	Not determined
A2G80	VQLRNGFPYFSY	lpha-dystroglycan	Not determined
A3G756	KNSFMALYLSKGRLVFALG	syndecans	創傷治癒
A5G27	RLVSYNGIIFFLK	CD44	がん転移抑制
	_	_	

(2)細胞接着ペプチドの創薬、DDS など医 薬分野への応用研究

筆者らが同定したラミニンの細胞接着ペプ チドが、創薬、DDS など医薬分野に応用可能 であることを示してきました。細胞接着は細 胞作用の最初のステップです。この最初のス テップを制御する細胞接着ペプチドは創薬研 究に応用可能となります。薬物送達学教室の 根岸洋一教授らとの共同研究で、図3のよう に、AG73をリポソームに修飾することによ り、がん細胞に多く発現するシンデカンに対 して特異的に結合し、がん細胞特異的に集積 するリポソームの開発に成功しました⁴⁾。ま た、α-ジストログリカンに結合するペプチド A2G80 (VQLRNGFPYFSY) を固定化したリ ポソームは筋肉細胞特異的に集積することが わかり、筋ジストロフィーなどの疾患治療へ の可能性が示されました5)。

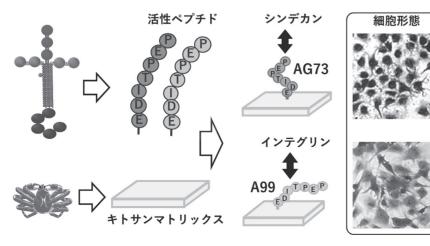


図3 AG73 修飾リポソーム

(3) 細胞接着ペプチドのバイオマテリアルへ の応用研究

再生医療や組織工学の発展に伴い、これら への応用を目的にしたバイオマテリアルの開発 が必須となってきています。図4に示したよう に、ラミニン活性ペプチドを多糖類のキトサン のマトリックスに固定化したペプチド-キトサ ンマトリックスの開発を行いました 6)。このペ プチド-マトリックスは、固定化した活性ペプ チドの受容体に特異的に結合し、細胞に対して 足場を提供するとともに様々な生物活性を有す ることが示されました。また、ペプチドをマト リックスに固定化することで細胞に対する作用 が飛躍的に増加することが示され、ペプチド-マトリックスがバイオマテリアルとして有用な 手法であることが示されました。

ペプチド-マトリックスをさらに発展させ最 適に構築するため、図5の様にマトリックス 側とリンカー側からの検討を行いました。ま ず、マトリックスの有用性をみるため塩基性 のキトサン以外の高分子多糖を検討しました。 酸性のアルギン酸やヒアルロン酸、中性のア ガロースを用いて、ペプチド-マトリックスを 作成しました。アルギン酸とヒアルロン酸の マトリックスでは非特異的な細胞接着が抑え られ、足場として適した材料と判断される結 果が得られました 7 。また、コラーゲンとペ プチドの混合マトリックスは良好な生物活性 を示し、ペプチドによる相乗効果を得ること ができました8)。さらに、3次元培養を目的に、

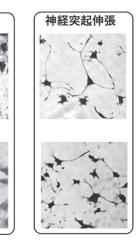


図4 ペプチド-キトサンマトリックスの作成と生物活性

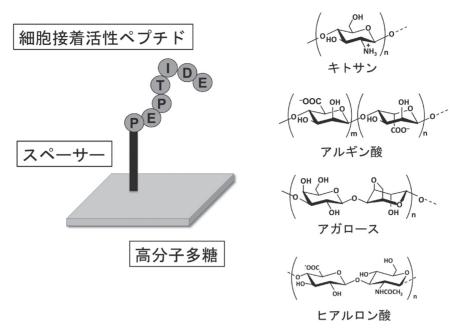


図5 ペプチドーマトリックスの構成

アガロースをペプチド-マトリックスの土台と して用いる方法も確立し 9)、アガロースゲル をシリンジで押し出すことによりマイクロゲ ルを作成することにより、3次元培養の可能 性を示すことができました¹⁰⁾。

ペプチドと多糖を結ぶリンカーについても 検討を加え、シンデカンに結合するペプチド を固定化した場合はリンカーの影響は少ない 一方、インテグインに結合するペプチドを固 定化するときには比較的長い親水性のリン カーが有用であることが示されました 11)。

(4) ラミニンペプチドの再構築

細胞接着タンパク質は巨大で複数の活性部 位を持ち、様々な受容体に作用しています。 図6のように、ラミニン α 1鎖 LG4 モジュー ルは、組換えタンパクを用いた実験からイン テグリンに結合する EF1 部位とシンデカン に結合する AG73 部位で細胞に接着し、細胞 伸展や神経突起伸長などを促進することを見 出しました $^{12)}$ 。次に、ラミニン α 1鎖 LG4 モ ジュールの活性を模倣したペプチド-マトリッ クスをデザインするため、EF1と AG73をキ トサンマトリックスに比を変えて固定化した EF1/AG73-キトサンマトリックスを作成しま した。EF1 と AG73 を 9:1 のモル比でキトサ ンマトリックスに結合したところ、細胞接着 活性が飛躍的に増加し、ラミニン α1 鎖 LG4 モジュールと同等な細胞伸展や神経突起伸長 促進活性を示すことを見出しました13)。これ は異なる受容体に結合する複数のペプチドを マトリックス上に混合して固定化することに より受容体間の相互作用による相乗効果を誘 発することが可能であることを示すものとな りました。同様な方法で複数のペプチドをキ トサンマトリックスに結合させることにより、 ペプチド同士の相乗効果や阻害効果を解明し ました¹⁴⁾。

さらに、マトリゲルの主要成分であるラミ ニン-111の活性を模倣すべく、図7のように (1) ラミニン-111 の合成ペプチドを用いた網 羅的スクリーニングにより60種類の活性ペプ チドを同定し、(2) その活性ペプチドをキト サンマトリックスに固定化したときに活性を 有する28種類の詳細な生物活性の解析から5 種類のグループに分け、(3) 各グループの中 で最も強い細胞接着活性を示すペプチドを混 合してキトサンマトリックスに固定化した混 合ペプチド-キトサンマトリックスを作成しま した¹⁵⁾。この混合ペプチド-キトサンマトリッ クスは単一のペプチド-キトサンマトリックス より遙かに強い細胞接着活性を示し、人工基 底膜ともいえるバイオマテリアルとしての応 用が期待されます。本研究は、合成ペプチド

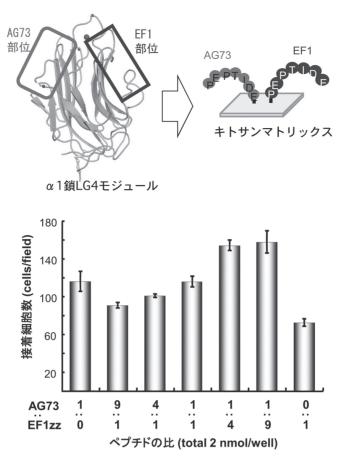


図 6 ラミニン α 1 鎖 LG4 モジュールの活性をミミックした混合ペプチド-キトサン膜とその活性

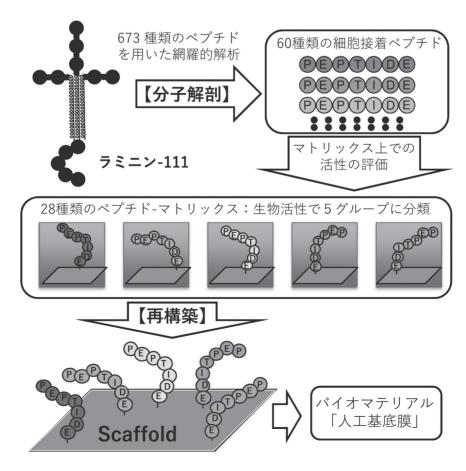


図7 ラミニンの分子解剖と再構築

を用いた細胞外マトリックスタンパク質の分 子解剖とその機能解明、さらには再構築といっ た新しい流れを示すものであります。

(5) 最近の研究成果

当研究室の山田講師による近年の研究成果に ついて紹介します16)。筆者らのように長年にわ たり細胞接着ペプチド研究を続けていると、ペ プチドと細胞接着活性の関係性に関して法則が 見えてくることがあります。近年はそのような関 係性の気付きから、複数の新規細胞接着ペプチ ドの同定に至っています。その一つがインテグ リン $\alpha v \beta 5$ に高い結合性を示す RGDX₁X₂ペプ チドです。そもそも、RGD(アルギニン-グリシ ン-アスパラギン酸) 配列はインテグリン結合モ チーフとして広く知られていました。RGD はイ ンテグリンサブタイプの中でも、 $\alpha v \beta 1$ 、 $\alpha v \beta 3$ 、 $\alpha \vee \beta 5$, $\alpha \vee \beta 6$, $\alpha \vee \beta 8$, $\alpha 5 \beta 1$, $\alpha 8 \beta 1$, $\alpha IIb \beta 3$ の8種類に結合することが知られていますが、 RGD がこれらのサブタイプの認識をどのよう に区別しているのかについては完全には明らか になっていません。筆者らの過去の研究でも、 RGD 含有ペプチドでインテグリン $\alpha v \beta 3$ への結 合は見られるものの、他のサブタイプへの結合 は確認されていませんでした。山田講師は、人 工多能性幹細胞 (iPS 細胞) の接着を促進する RGD ペプチドが存在する一方で、ある RGD ペ プチドは iPS 細胞にほとんど活性を示さないこ

とにヒントを得て、RGD の周辺配列に iPS 細胞 の接着に重要なアミノ酸が隠されていることに 気付きました。その結果、iPS 細胞の発現する インテグリン α v β 5への結合には、RGD に続く 特定の2残基 X₁X₂ (VF (バリン-フェニルアラ ニン) または NY (アスパラギン-チロシン)) の 存在が必要であることを明らかにしました。そ して、iPS 細胞をはじめとするある種の細胞は、 インテグリンαvβ5を発現している一方、RGD 単独でも結合できる αvβ3 を持たないため、そ の接着には RGDX₁X₂ 配列が必要であるという ことがわかりました (図 8)。さらに、 X_1X_2 残基 の網羅的なアミノ酸置換により、X₁として T (ス レオニン)が最も適していること、X₂において は芳香族性が重要で、F、Y、W(トリプトファ ン)の中でもFが最も適していることを見出 し、最適な配列として RGDTF を同定しました。 RGDTF ペプチドは iPS 細胞をはじめとするイ ンテグリン ανβ5 依存的な細胞に対する接着因 子として、細胞培養基材や生体材料の開発など、 様々な応用が期待されます。

おわりに

これまでの病態生化学教室での職員、大学 院生、卒論生の研究成果を概説させて頂きま した。細胞外マトリックスタンパク質の細胞 接着ペプチドの探索と医薬分野への応用を 目的に研究を行ってきました。近年、再生

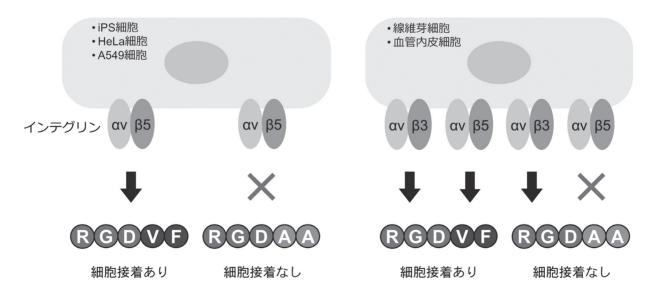


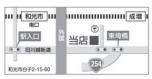
図8 RGDVF配列の細胞接着メカニズム

医療への応用をめざした研究が注目されてい ます。ラミニンやその組換えタンパク質はす でに iPS 細胞の培養基材として実用化されて います。病態生化学教室の研究がさらに発展 するとともに、研究成果が実際の医薬分野に 応用されていくことを期待しています。

参考文献

- 1) Nomizu, M. et al., J. Biol. Chem. 270, 20583-20590 (1995); Nomizu, M. et al., J. Biol. Chem. 272, 32198-32205 (1997); Nomizu, M. et al., J. Biol. Chem. 273, 32491-32499 (1998).
- 2) Negishi, Y. & Nomizu, M., Pharmacol. Ther. 202, 91-97 (2019).
- 3) Hozumi, K. et al., Biochemistry 48, 5375-5381 (2009); Urushibata, S. et al., Biochemistry 48, 10522-10532 (2009); Suzuki, N. et al., Matrix Biol. 29, 143-151 (2010); Urushibata, S. et al., Arch. Biochem. Biophys. 497, 43-54 (2010); Hozumi, K. et al., J. Biol. Chem. 287, 25111-25122 (2012); Katagiri, F., Arch. Biochem. Biophys. 521, 32-42 (2012); Katagiri, F. et al., Biochemistry 51, 4950-4958 (2012); Katagiri, F. et al., Arch. Biochem. Biophys. 550-551, 33-41 (2014); Katagiri, F. et al., Biochemistry 53, 3699-3708 (2014). Kumai, J. et al., J. Pept. Sci. 2019 Dec, 25 (12): e3218.
- 4) Negishi, Y. et al., Mol. Pharm. 7, 217-226 (2010); Omata, D. et al., Mol. Pharm. 9, 1017-1023 (2012); Hamano, N. et al., Mol. Pharm. 10, 774-779 (2013); Negishi, Y. et al., Biomaterials 34, 501-507 (2013).

- 5) Nirasawa, K. et al., J. Control. Release 329, 988-996 (2021); Sasaki, E. et al., J. Control. Release 329, 1037-1045 (2021).
- 6) Mochizuki, M. et al., FASEB J. 17, 875-877 (2003); Yamada, Y. et al., Chemistry 17, 10500-10508 (2011).
- 7) Yamada, Y. et al., Biopolymers 94, 711-720 (2010); Yamada, Y. et al., Biomaterials 34, 6539-6547 (2013).
- 8) Yamada, Y. et al., Biomaterials 32, 4327-4335
- 9) Yamada, Y. et al., Biomaterials 33, 4118-4125 (2012).
- 10) Yamada, Y. et al., Biomacromolecules 21, 3765-3771 (2020).
- 11) Kumai, J. et al., Biopolymers 106, 512-520 (2016).
- 12) Hozumi, K. et al., J. Biol. Chem. 281, 32929-32940
- 13) Hozumi, K. et al., Biomaterials 30, 1596-1603 (2009).
- 14) Hozumi, K. et al., Biomaterials 31, 3237-3243 (2010); Hozumi, K. et al., FEBS Letters 584, 3381-3385 (2010); Otagiri, D. et al., Biopolymers 100, 751-759 (2013).
- 15) Hozumi, K. et al., Biomaterials 33, 4241-4250 (2012).
- 16) Yamada, Y. et al., FASEB J. 36, e22389 (2022); Yamada, Y. et al., ACS Omega 8, 4687-4693 (2023).


有限会社 富沢薬局

富沢薬局は、東京メトロ・地下鉄 「成増駅」より徒歩12分。隣接して いる富沢整形外科・内科様と共通の 駐車場もございます。開局から50年 以上、地域に密着したOTC薬局から 調剤薬局として営業を続けています。

【場所】埼玉県和光市白子2-15-60 【代表】松川 厚子(大学22回卒)

保険調剤・医薬品

営業時間 9:00~20:00 (日曜・祝日休み) TEL.048-461-2031

遠方のお客様には配達を承ります